2D Transformation Matrices!

A 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be used to transform any point P = (x, y) in the 2D Cartesian plane as follows:

First *P* is written as a column matrix $\begin{bmatrix} x \\ y \end{bmatrix}$. This column matrix is then premultiplied by *A*:

$$A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax+by \\ cx+dy \end{bmatrix}$$

The resulting matrix $\begin{bmatrix} ax+by\\cx+dy \end{bmatrix}$ gives the coordinates of the image P'=(ax+by,cx+dy).

Thus the matrix A can be used to make the transformation

$$(x, y) \rightarrow (ax+by, cx+dy).$$

Go to

https://www.desmos.com/calculator/erl8wdtrvu

Click the spanner button at the top right and choose the large 'A' to increase the display size.

Here you can investigate the transformations of a square that result from

multiplying the coordinates of its points by a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Initially A should be the identity matrix (i.e. a=1, b=0, c=0 and d=1).

You will now investigate in turn the effects of changing the values of a, b, c and d. (Note that for any of these tasks you can choose to show a 'Reference square' which will be unchanged by the transformations.)

1. Use the slider to change just the values of a (keeping b=0, c=0 and d=1) and describe as precisely as possible the resulting transformations of the square

The transformations above result from the following equation:

$$\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax \\ y \end{bmatrix}$$

giving transformations defined by

to Ourstian 1

 $(x, y) \rightarrow (ax, y)$

2. With reference to the above transformation definition, explain your answer

Matrix form	Effect on the square	Transformation	Explanation
$\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$	The square is dilated horizontally by a factor of $ a \lor i$. If $a < 0$ then the square is reflected through the <i>y</i> -axis.	(x,y) → (ax,y)	x-coordinates are multiplied by a, resulting in a horizontal dilation by a, but y- coordinates are unchanged.
$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$			
$\begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix}$			

$\begin{bmatrix} 1 & 0 \\ 0 & d \end{bmatrix}$		

Now, by adjusting values of a, b, c and c, try to **rotate** the square by 90° anticlockwise.

4. Complete the following table.

Rotation angle (anticlockwise)	Matrix	Transformation definition
90 °		
180°		
270°		
45 °		
135°		
30 °		
60 °		

5. What relationship exists between the rotation angle θ and the values of a, b, c and d?

6. Write down, in terms of θ , the general form of a matrix which will rotate the square anticlockwise by the angle θ .

Now, by adjusting values of a, b, c and d, try to **reflect** the square through the y-axis.

7. Investigate reflections through lines passing through the origin at various angles to the *x*-axis, and complete the following table. To help with this you can click to show the given line of reflection and adjust its angle θ (given in Desmos as *T*) from the *x*-axis. You may also find it helpful to show the Reference square.

Angle of line of reflection from <i>x</i> -axis	Matrix	Transformation definition
90°		
45 °		
0 °		
30 °		
60 °		
120°		
135°		

- 8. What relationship exists between the angle θ of the line of reflection and the values of a, b, c and d?
- 9. Write down, in terms of θ , the general form of a matrix which will reflect the square through a line passing through the origin at an angle θ from the x-axis