Table of Contents

Graph

Polynomials

Two methods to convert improper to proper

$$\begin{align} \text{\{Insert polynomialing\}} \\ \frac{x^{2}+3x+4}{x+4}&=\frac{(x-1)(x+4)+8}{x+4} \text{ (still improper)} \\ &= x-1 + \frac{8}{x+4}\text{, now it is proper!} \end{align} $$

Dividing by linear(specifically) polynomials

The Remainder Theorem and The Factor Theorem

$$\begin{align} \text{Proving The Remainder Theorem.} \\ \text{Let } r \text{ be the remainder when }P(x) \text{ is divided by }(x-a).\\ \text{Then for some polynomial }Q(x), \\ P(x)=Q(x)(x-a)+r. \\ \text{Hence, } P(x)=Q(a)(a-a)+r=r\text{ as required.} \end{align} $$ $$\begin{align} \text{Proving The Factor Theorem (if and only if)} \\ \text{Suppose } (x-a) \text{ is a factor of }P(x). \\ \text{ Then the remainder when }P(x)\text{ is divided by }(x-a)\text{ is 0.} \\ \text{ Hence, by the Remainder Theorem, }P(a)=0. \\ \text{Conversely, suppose that }P(a)=0. \\ \text{ Then the remainder when }P(x)\text{ is divided by }(x-a)\text{ is 0. } \\ \text{Hence}(x-a)\text{ is a factor of }P(x). \end{align} $$

e.g. Find $k$ given that $(x-2)$ is a factor of $P(x)=x^3+kx^2-3x+6$. Hence, fully factorise $x^3+kx^2-3x+6$.

$$\begin{align} \text{Let P(x)}&=x^3+kx^2-3x+6 \\ \text{Since }(x-2)&\text{ is a factor, by The Factor}\text{ theorem} \\ P(2) &= 0 \\ 8 +4k -6+6&=0 \\ \text{So }k&=-2 \\ \therefore P(x)&= x^3+-2x^2-3x+6 \\ \therefore P(x) &= Q(x)(x-2) \text{ where Q has degree 2.} \\ \therefore x^3+-2x^2-3x+6&=(ax^{2}+bx+c)(x-2) \\ &\implies a=1, c=-3 \\ \therefore -2x^{2}&=-2x^{2}+bx^{2} \\ &\implies b=0 \\ \therefore P(x)&=(x^2-3)(x-2) \\ &=(x+\sqrt{ 3 })(x-\sqrt{ 3 })(x-2) \end{align} $$