Table of Contents

Graph

Relativistic momentum

For particles moving at relativistic speeds,

$$\begin{align} p_{v}=\frac{m_{0}v}{\sqrt{1-\frac{v^2}{c^2} }} \end{align} $$

Relativistic... energy?!?!

At rest, $E=m_{0}c^2$. (Woah)

But, for a particle which we observe moving at relativistic speed, instead its total relativistic energy is represented as such:

$$\begin{align} E_{t}=\frac{m_{0}c^2}{\sqrt{ 1-\frac{v^2}{c^2} }} \end{align} $$

Note that once again, $m_{0}$ represents the rest mass of the particle (same inertial frame of reference).

But then, what is the kinetic energy of the particle?

$$\begin{align} E_{t}&=E_{k}+E_{\text{rest}} \\ \therefore E_{k}&=E_{t}-E_{rest} \\ &= \frac{m_{0}c^2}{\sqrt{ 1-\frac{v^2}{c^2} }}-m_{0}c^2 \\ &=m_{0}c^2\left(\frac{1}{\sqrt{ 1-\frac{v^2}{c^2} }}-1\right) \end{align} $$

This gives us the relativistic kinetic energy. DONT DO $\frac{1}{2}mv^2$!!!

Example

Consider electron.

$$\begin{align} E_{\text{rest}}&=m_{0}c^2 \\ &=9.11 \times 10^{-31}\times 9 \times 10^{16} \\ &= 8.199 \times 10^{-14} \ J \\ &=0.512\ MeV \ (1\ MeV =1.6 \times 10^{-13} \ J) \end{align} $$

Consider it is travelling at 0.9c.

Hence,

$$\begin{align} E_{t}&=\frac{m_{0}c^2}{\sqrt{ 1-\frac{v^2}{c^2} }} \\ &=\frac{9.11 \times 10^{-31}\times 9 \times 10^{16}}{\sqrt{ 1-0.9^2 }} \\ &=1.88 \times 10^{-13} \ J \\ \therefore E_{k}&=E_{t}-E_{\text{rest}} \\ &=1.88 \times 10^{-13}-8.199 \times 10^{-14} \\ &=1.06 \times 10^{-13}\ J \ \checkmark \end{align} $$