Banki, a Chinese educational tool
Part 1: Vectors!

Edward Huynh &

Abstract

This paper proposes a concept for leveraging word
embeddings to teach semantic relationships in the
Chinese language. I used the Chinese Wikipedia’s
data dump to create an initial test model. Then,
based on a dataset consisting of Baidu Baike articles,
I created a word2vec model which can identify im-
plicit morphological and explicit semantic relations.
I hope to combine this with a variation of the Anki
algorithm to produce a powerful Chinese educational
tool for students.

1. Introduction

So I was watching a 3B1B video about trans-
formers the other day and I thought that this
was really cooll What I felt was most thought-
provoking was that the model was able to grasp
semantic meaning in a way that was truly or-
ganic, with it having an almost human under-
standing of the vocabulary. So then I thought,
"Wouldn’t this be really cool for Chinese?” And
so here we are. For the non-Chinese people read-
ing this, I'll leave an appendix at the end with
all the translated words.

2. Preliminary research

I was foolish enough to think that people would
just have a vector database for the Chinese lan-
guage lying around, but no. A precursory search
on Google yields promising results, for example
this and this, but unfortunately, both require
you to download from Baidu cloud, which is not
gonna happen. I eventually stumbled on this
Github repository which was surprising very in-
formative, despite being 9 years out of date. As a
result, most of the Python scripts were outdated
and would not work, however the overall process
was very similar to what I wanted to achieve.

After fixing up the scripts, 1 followed the
example Wikipedia article dump to produce a
model that was relatively good, considering it
only took about 3 hours in total to make and
train.

Obtain Baidu Baike

Cbtain Wikipedia data) data

Process data into
usable corpus

h 4

Tokenize corpus

h

Train corpus into
word2vec model

Wikipedia model
(quick to make)

Convert to
KeyedVectors model
for easier usage

h 4

Baidu model
(lightweight and
accurate)

Figure 1: Flowchart of my approach, with the
end goal being the a relatively accurate vector
embedding model for the Chinese language.

1.wv.most_similaxr('# ')
, 0.6334753036499023 A,
, 0.586654782295227), ('

0.5915879607200623)
, ©.5718361139297485), ('# &', 0
, (¥4, 0.5551019310951233), ('# ', 0.550615
', 0.547660231590271), ('%ii', 0.541525483131
', ©.5332564115524292)]

Figure 2: Testing the initial model’s ability to
find similar words.

>>> model.wv.most_similar(positive=["
[("2 % %', 0.5258408784866333), ('f#h
©0.4173515 [

i

', 0.40404263138771057), ('¥1 ¥ ', 0.39640527963638306) ,
135308265686)]

Figure 3: Testing the initial model’s ability to
understand the semantics of vocabulary. It was
able to recognise that Italian + Hitler - German
— Mussolini, but with a low similarity (0.526).
Comparisons will be made later on.

edwardleehuynh@gmail.com
https://youtu.be/wjZofJX0v4M?t=889
https://youtu.be/wjZofJX0v4M?t=889
https://embedding.github.io/vectors/
https://github.com/Embedding/Chinese-Word-Vectors
https://github.com/candlewill/Chinsese_word_vectors
https://github.com/candlewill/Chinsese_word_vectors
https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2

3. What’s happening?

This paper covers my methodology to create a
vector model for the Chinese language. But why?
Why is this useful?

In essence, I'm trying to create a model which
is able to understand Chinese in an authentic,
natural way. Instead of having it simply a dic-
tionary lookup, the goal is to have a model that
understands the relationships between words, not
stmply that the words exist.

This whole project is based on a pretty ba-
sic idea from the NLP field (Natural language
processing) which is that a dataset of text can
have its 'tokens’ stored in terms of vectors, which
embeds their relationships between each other.
For example, suppose this is the text I train my
model on:

”The Spring festival is my favourite fes-
tival. The Mid-Autumn festival is my
favourite festival.”

The hope is that this text can be used to cre-
ate some model which recognises how ’Spring fes-
tival’ and 'Mid-Autumn festival’ are used simi-
larly, and thus are similar terms. Furthermore,
with a much more extensive dataset, the model
should be able to understand these terms from
a complex, semantic perspective. For example,
the term ’Spring festival’ should have the words
"Spring’ and ’festival’ embedded into its meaning.

This is where vectors come on. Essentially,
with extremely high dimensional vectors, we can
iterate over large texts of data, which are called
corpora (singular is corpus) and construct a set
of vectors from the vocabulary of the text, called
tokens !.

By iterating over our corpora, we are able
to store the semantic meanings of the tokens as
vectors. A simplified explanation of how this is
done is that we are able to create base vectors
that encode the fundamental meanings of things.
For example, we could have a vector for hard-
ness, and metallic-ness. From these fundamental
vectors, we are able to build up our vocabulary
through combining and varying the magnitude of
these vectors. For example, the word wall’ could
be comprised of the vector for hardness with a
high magnitude, and a small vector for metallic-
ness, because 'wall’ is not specific in reference to
whether it’s a steel wall, a stone wall, etc.

This wholly relies on the high-dimensionality

!Note that tokens aren’t exactly the vocabulary, but
that’s a bit of a tangent, so if you're interested you can
read this and do more research by yourself.

Figure 4: Extreme simplification of what a
'wall’ vector may contain.

of the vectors. Because there are so many di-
mensions, we can encode semantic meanings on
all these dimensions. For example, the vector for
"friendliness’ could be stored as:

—5.5083423 x 10°7
—3.0600383 x 10°
1.4378819 x 1071
1.9671721 x 109 5.8032078 x 10!
1.3521380 x 10° —1.3395215 x 10°
—1.5511565 x 10° 1.2028406 x 10°

r—3.1496480 x 107!
—1.7922379 x 109
—1.6571548 x 10°

¥fren =

In summary, the goal is to analyse large
sets of data and use them to create a vector
model which encodes the semantic mean-
ings of the dataset’s vocabulary.

If you're still confused, please please please
watch 3B1B’s amazing video about GPT, specif-
ically the section about word embeddings. He
explains it much better than I can.

4. Processing Baidu corpus

The previously mentioned Wikipedia corpus was
2.5GB, however I was able to find a much larger
corpus of Baidu Baike articles on Hugging Face.
In comparison, this file was a whopping 16GB!
However, this was formatted differently to the
Wikipedia dump, hence I would have to modify
the processing script before tokenization.

-Iw-I--1-- 1 dev root 16G May 25 18:02 563w_baidubaike.json

-Tw-r--Y-- 1 dev root 2.5G May 24 12:02 zhwiki-)¢

Figure 5: Size comparison of corpus

In hindsight, I probably shouldn’t have in-

cluded the 'Summary: ’ and ’Section Text: ’,

https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
https://youtu.be/wjZofJX0v4M?si=N_ykDYQOic-101Nb&t=747
https://huggingface.co/datasets/xuqinyang/BaiduBaike-5.63M

but I guess having a million of those wouldn’t re-
ally hurt. However this definitely increases the
size of the processed data file for no reason.

5. Tokenization

The previously mentioned Github repository sug-
gested two methods of tokenization: either split-
ting each character individually, or by using
Jieba to segment the text. I opted to use Jieba,
however upon running the script I immediately
encountered the classic ’'OOM killer’ error, be-
cause trying to process 2.5GB apparently over-
loaded the 8GB of memory I had available.

oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),cpuset=user.slice,mems_allo|
wed=0, global_oom, task_memcg=/user.slice/user-0.slice/session-81.scope,task=python3,pid=218474,u

id=0

Figure 6: Certified ”(t)OOM(wn)” moment

Instead, I had to use a workaround to this
memory issue by processing the file in chunks.

Thankfully this worked quite well, however it
made tokenizing the initial model take very long.
I had to increase the chunk size from 1048 to
40960kB for decent times. Note that a chunk
size of 1048kB resulted in roughly a 27%
utilisation of my RAM while processing a
2.5GB corpus. (This is for the Wikipedia
corpus)

6. Training

As mentioned previously, training the initial
model was quite simple and quick, taking around
3 hours. However this was not the case for the
Baidu Baike corpus. My estimations are that it
took around 14 hours of continuous CPU usage
to train, however the specifications for this model
were quite over the top, as follows:

= Vector size=300
= Window=10
= Min count=20

= Epochs=10

In particular, using 10 epochs was a bit ridicu-
lous in hindsight. It would have been fine with 5
epochs, however this did make the model a little
bit more accurate. It may be useful to consider
training with even more epochs over a longer pe-
riod of time to further refine the model, but this
results in a problem of power usage.

6.1. Power usage

My estimate for the power usage when train-
ing the model is a whopping 19.7W of power!
Note that this was a semi-headless server, with it
being bare-bones Debian. Over 14 hours, that
should be about $0.0909955214 worth of com-
puting time, which is probably wrong because
I couldn’t find a power to cost calculator online.
This means running multiple epochs could get
quite expensive, and far outweigh the returns in
accuracy for the model.

7. Comparing models

o

Figure 7: Visualisation of semantic relation-
ship between ’ Z745#) and * BZEKHJE. Note
that this diagram only represents 2-dimensional
space, while both models were trained to make
300-dimensional vectors. In this case, the seman-
tics of * B RANW A’ and * fZE N’ are able to be
represented in high-dimensional vector space.

ZERAMAN B-o®H FNH o

+ AR- U JtH

EE AN —

BHEPE
Wikipedia 0.52584 0.57184 0.52667
Baidu 0.75288 0.63099 0.74542
Baike

Table 1: Comparison of similarity scores

The preliminary results show that compared
to the smaller model trained on Wikipedia’s data,
using the Baidu Baike model yielded stronger re-
sults in terms of the model’s understanding of the
semantics in the examples. However, inspection
of both model indicates that they primarily seem
to be identifying similar words through vaguely
similar usage, as shown below.

https://github.com/fxsjy/jieba

A - A | Y
Wk | W®K E EES
I # Fefi]
st | nlx IR e
2 | AL | chimie | Ak

Table 2: Wikipedia model’s top 3 most similar
words, in decreasing order of similarity

| A A | PRk
Wik | Wk | kR ETA
I 3 & BIA

Bise | RES | WAH | &
e | Yt | W | APUE
Table 3: Baidu model’s top 3 most similar

words, in decreasing order of similarity

From inspecting the tables, it is clear that the
Baidu model has a much firmer grasp on the se-
mantic meanings of each word, and is more accu-
rately able to identify synonyms. However, both
models suffer from being unable to distinguish
words that are used similarly, for example %
47 and FEKTT/IEPHAY are interpreted as hav-
ing similar meanings, as they are used in almost
exactly the same way.

Despite this, the Baidu model is more accu-
rately able to identify synonyms in comparison to
the Wikipedia model. For example, when finding
similar words for ’ {22’ the Baidu model accu-
rately and confidently found correct synonyms,
compared to the Wikipedia model which pro-
vided synonyms with less confidence and an ad-
ditional erroneous synonym ().

Oddly, for more uncommon vocabulary (e.g.
1k2#), the Wikipedia model seemed to be more
accurate than the Baidu model (ignoring the er-
roneous English). This can be assumed to be be-
cause the processed Wikipedia data had obscure
articles linked together, increasing the weighting
of these similar terminologies. It should be noted
however that the Wikipedia model was a lot less
confident in these results. (0.722; 0.711, 0.694
for Baidu, 0.603, 0.589, 0.564 for Wikipedia) Fur-
thermore, the much larger size of the Baidu cor-
pus may mean that terms being used in a simi-
lar fashion are overrepresented as similar words.
This may explain why > #J#’, which can be used
similarly to ’ fk2%’ appears in the Baidu model’s
results.

8. Conclusion

A precursory analysis indicates the Baidu model
has a strong understanding of the semantic re-

lationships of the Chinese language compared to
the Wikipedia model, however more testing with
more intricate examples is required. Before be-
ing used for the intended educational tool, the
Baidu model should be more refined with further
training.

-- 1 dev dev 41M May 27 15:11 baidu.kv

-- 1 dev dev '1.4G May 27 15:11 baidu.kv.vectors.npy

-- 1 dev root 37M May 27 10:15 baidu.model

-- 1 dev root 1.4G May 27 1@:15 baidu.model.synlneg.npy

-- 1 dev root 1.4G May 27 1@:14 baidu.model.wv.vectors.npy

-- 1 dev root 15M May 25 16:22 zh.model
-- 1 dev root 892M May 25 16:22 zh.model.synlneg.npy
-- 1 dev root 892M May 25 16:22 zh.model.wv.vectors.npy

Figure 8: Comparison between model file
sizes. Note that the Wikipedia model is the
raw Word2Vec model, while the Baidu model has
been converted to KeyedVectors, which are much
faster to read. While the Wikipedia model is
roughly the same size as its corpus, the reduced
Baidu model is significantly smaller, at 1.4GB
compared to 16GB. This suggests more repeti-
tive data from the Baidu corpus.

Acknowledgements

The 3B1B video which inspired me to dig deeper.
Candlewill’s Github repository which started me
on this journey. Gensim’s word2vec and Keyed-
Vectors documentation for helping me create
the vector embedding models. Wikipedia for
graciously making their data dumps available.
Qinyang Xu for providing the dataset of Baidu
Baike.

https://youtu.be/wjZofJX0v4M?t=889
https://github.com/candlewill/Chinsese_word_vectors
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/keyedvectors.html
https://radimrehurek.com/gensim/models/keyedvectors.html
https://dumps.wikimedia.org/zhwiki/latest/
https://huggingface.co/datasets/xuqinyang/BaiduBaike-5.63M

A. Appendix 1: Translation table

Translations thanks to the CC-CEDICT dictio-

nary.
Chinese () English (3&if)

Ui to speak; to talk; to say
IS to tell; to inform; to let know
= Spring Festival (Chinese New Year)
J.H New Year’s Day
A New Year
TR to celebrate the Chinese New Year

Y Tomb Sweeping Day
WA friend
E Y intimate friend
FES classmate

R you

F I; me; my
e] we; us; ourselves; our
i pretty; beautiful

R very beautiful
HE good-looking
n] % cute
e chemistry
= physical chemistry
Py physics
AL organic chemistry
REE partner
A old friend
Fr kT Mid-Autumn Festival

& you
LN other people; others; other person
IS handsome
e 2 cheek, face

i analytical chemistry

BERAIA Italian person
R Adolf Hitler (1889-1945)
FEE A German person or people

SERIE Benito Mussolini (1883-1945)

	Introduction
	Preliminary research
	What's happening?
	Processing Baidu corpus
	Tokenization
	Training
	Power usage

	Comparing models
	Conclusion
	Appendix 1: Translation table

